天一大联考 2024-2025学年(上)高二年级开学考试题(数学)

天一大联考 2024-2025学年(上)高二年级开学考试题(数学)试卷答案,我们目前收集并整理关于天一大联考 2024-2025学年(上)高二年级开学考试题(数学)得系列试题及其答案,更多试题答案请关注本网站↓↓↓

试题答案

天一大联考 2024-2025学年(上)高二年级开学考试题(数学)试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请捕获只因

加几滴KSCN溶液作指示剂,用0.1000mol·LNH4Fe(SO4)2标准溶液滴定,将Ti3+氧化为TO2+,消耗0.1000mol.LNHFe(S04)2标准溶液23.00mL

该样品中TiO2的质量分数

(写出计算过程)

16.(15分)天然产物F具有抗肿瘤、镇痉等生物活性,可通过以下路线合成:空气OH-CH3I,NaHNaBH4.DE(1)1mol有机物B中SP2杂化的碳原子数目为mol

(2)E→F的反应类型为(3)D→E中有一种副产品(分子式C14H4O3)生成,该副产品的结构简式为(4)C的一种同分异构体同时满足以下条件,写出该同分异构体的结构简式:a.能与FeCl3溶液发生显色反应:b.碱性条件下水解生成两种产物,酸化后分子中均只有2种不同化学环境的氢

COOCH3(5)写出以和三一COOCH3为原料制备的合成路线流程图(无机试剂和有机溶剂任用,合成路线流程图示例见本题题干)

17.(13分)有效去除大气中的NO,和水体中的氮是环境保护的重要课题

(1)已知:①2C0(g+02(g)=2C02(g);△H1=-566.0kJ.mol②N2(g)+202(g)=2NO2(g):△H2=+64kJ·mor反应2NO2(g)+4C0(g)=N2(g)+4C02(g):△H3=」试卷第7页,共8页

分析(1)求得h(x)的导数,对a讨论,当a≤0时,当a>0时,由导数大于0,可得增区间;由导数小于0,可得减区间;
(2)要证对任意n∈N*,均有$\frac{{e}^{n}}{n!}$≤${e}^{1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}}$≤en.即证ln$\frac{{e}^{n}}{n!}$≤1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<ln(en),构造函数F(x)=lnx-$\frac{x-1}{x}$,求出导数,判断单调性,由累加法即可证得左边;再由数学归纳法证得右边.

解答解:(1)函数h(x)=f′(x)+g(x)=1+lnx+$\frac{a}{x}$-2(x>0),
h′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,
当a≤0时,h′(x)>0,h(x)递增;
当a>0时,h′(x)>0,可得x>a;h′(x)<0,可得0<x<a.
综上可得,a≤0时,h(x)的增区间为(0,+∞);
a>0时,h(x)的增区间为(a,+∞),减区间为(0,a);
(2)证明:要证对任意n∈N*,均有$\frac{{e}^{n}}{n!}$≤${e}^{1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}}$<en.
即证ln$\frac{{e}^{n}}{n!}$≤1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<ln(en),
先证ln$\frac{{e}^{n}}{n!}$≤1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$.
由F(x)=lnx-$\frac{x-1}{x}$的导数F′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
当x≥1时,F(x)递增,F(x)≥F(1)=0,
即为$\frac{1}{x}$≥1-lnx=ln$\frac{e}{x}$,
令x=1,2,3,…,n,累加可得,
1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$≥lne+ln$\frac{e}{2}$+…+ln$\frac{e}{n}$=ln$\frac{{e}^{n}}{n!}$;
再证1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<ln(en),
运用数学归纳法证明.
当n=1时,左边=1,右边=lne=1,成立;
假设n=k时,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$≤ln(ek),成立.
当n=k+1时,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$+$\frac{1}{k+1}$≤ln(ek)+$\frac{1}{k+1}$,
要证1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$+$\frac{1}{k+1}$≤lne(k+1),
只要证ln(ek)+$\frac{1}{k+1}$≤lne(k+1),
即证$\frac{1}{k+1}$≤ln$\frac{k+1}{k}$=ln(1+$\frac{1}{k}$),
可令x=$\frac{1}{k}$∈(0,1],即证ln(1+x)≥$\frac{x}{x+1}$,
由G(x)=ln(1+x)-$\frac{x}{x+1}$的导数为$\frac{1}{1+x}$-$\frac{1}{(x+1)^{2}}$=$\frac{x}{(x+1)^{2}}$>0,
则G(x)在(0,1]递增,即有G(x)>G(0)=0,
即有ln(1+x)≥$\frac{x}{x+1}$成立,故$\frac{1}{k+1}$≤ln$\frac{k+1}{k}$=ln(1+$\frac{1}{k}$),
综上可得1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<ln(en),
故原不等式成立.

点评本题考查导数的运用:求单调区间,考查不等式的证明,注意运用构造函数判断单调性,同时考查累加法和分类讨论的思想方法,以及数学归纳法的运用,属于难题.